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ABSTRACT: Enhanced mitochondrial potential in carcinoma
cells is an important characteristic of cancer. It is of great current
interest to develop a radiotracer that is sensitive to mitochon-
drial potential changes at the early stage of tumor growth. In this
report, we present the synthesis and evaluation of *Cu-labeled
Lissamine rhodamine B (LRB), **Cu(DOTA-LRB) (DOTA-
LRB = 2-(6-(diethylamino)-3-(diethyliminio )-3H-xanthen-9-yl)-
5-(N-(2-(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-
dodecan-1-yl)acetamido)ethyl)sulfamoyl)benzenesulfonate) as
a new radiotracer for imaging tumors in athymic nude mice
bearing U87MG human glioma xenografts by positron emission
tomography (PET). We also explored its localization mechan-
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ism using Cu(DOTA-LRB) as the fluorescent probe in both the U87MG human glioma cell line and the cultured primary US7MG
glioma cells. It was found that 64Cu(DOTA—LRB) had the highest tumor uptake (6.54 & 1.50,6.91 & 1.26, 5.68 & 1.13, 7.58 £ 1.96,
and 5.14 £ 1.50%ID/g at 0.5, 1, 2, 4, and 24 h postinjection, respectively) among many %4Cu-labeled organic cations evaluated in the
same animal model. The cellular staining study indicated that Ca(DOTA-LRB) was able to localize in mitochondria of U87MG
glioma cells due to the enhanced negative mitochondrial potential. This statement is completely supported by the results from
decoupling experiment with carbonylcyanide-m-chlorophenylhydrazone (CCCP). MicroPET data showed that the U87MG glioma
tumors were clearly visualized as early as 30 min postinjection with %*Cu(DOTA-LRB). **Cu(DOTA-LRB) remained stable during
renal excretion, but underwent extensive degradation during hepatobiliary excretion. On the basis of the results from this study, it
was concluded that **Cu(DOTA-LRB) represents a new class of promising PET radiotracers for noninvasive imaging of the MDR-

negative tumors.
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M INTRODUCTION

Cancer is the second leading cause of death worldwide. The
most prevalent forms of the disease are solid tumors of the lung,
breast, prostate, colon and rectum.' Most cancer patients can
survive for a long period of time after surgery, radiation and
chemotherapy or a combination thereof if it can be detected at
the early stage. Therefore, accurate early detection is highly
desirable so that various therapeutic regimens can be given before
the tumors become widely spread. Many imaging modalities are
currently available for cancer detection. Ultrasonography (US),
computed tomography (CT) and magnetic resonance imaging
(MRI) can provide details of structural changes, variations in
density and differences in proton content in tissues. However,
significant challenges remain in using US, CT and MRI for
molecular imaging of cancer. Nuclear medicine procedures using
radiolabeled receptor ligands can provide the in vivo character-
ization of cellular structure and are able to monitor biological
changes in the tumor tissues at the molecular level. A significant
challenge for most of the receptor-based radiotracers is that not
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all the cancers or tumor tissues overexpress that specific receptor.
Thus, it is of great benefit to develop a molecular imaging probe
that could detect cancers by targeting a biomarker found in
majority, if not all, of human cancer tissues.

Alteration in mitochondrial potential (AW,,) is characteristic
of all human cancers.””* It was reported that the mitochondrial
potential in carcinoma cells is higher than that in normal cells of
the surrounding tissues.” ° The observation that enhanced
mitochondrial potential is prevalent in tumor cell phenotype
provides the conceptual basis to develop the mitochondrion-
targeted therapeutic pharmaceuticals and molecular imaging
probes.'®”'* Since mitochondrial potential is negative, the
delocalized organic cations tend to accumulate in the energized
mitochondria of tumor cells.">~'® For example, rhodamine
derivatives have been widely used to determine the mitochondrial
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Figure 1. Proposed structures of %4Cu(DOTA-LRB) and **Cu(DTPA-
LRB). Lissamine rhodamine B (LRB) is used as the mitochondrion-
targeting molecule to carry *Cu into tumor cells.

potential in tumor cells,’ ® and as fluorescent probes for optical
imaging of tumors.'” >* Recently, Packard’s group reported
several '®F-labeled rhodamine derivatives as PET (positron
emission tomography) radiotracers for myocardial perfusion
imaging.**>’ Several research groups proposed to use the radi-
olabeled triphenylphosphonium (TPP) cations as PET radio-
tracers for both tumor and myocardial perfusion imaging.** " Tt
was reported that the tumor uptake of 3’H—tetraphenylsphospho-
nium correlated well with tumor cell proliferation,® strongly
suggesting that radiolabeled TPP cations might be useful for
monitoring tumor aggressiveness. Even though biodistribution
and imaging studies in small animals and dogs have demon-
strated the utility of ''C- and '*F-labeled phosphonium cations
for both heart and tumor imaging,e’zfss’37 the combination of
short half-life of ' C (T}, = 20.4 min) and '*F (T}, = 110 min)
with their high background in normal organs (particularly heart
and liver), poor availability and high cost makes the imaging with
"'C- and "*F-labeled phosphonium cations impractical for rou-
tine clinic applications. Therefore, there is an urgent need for
alternative PET radiotracers that detect the tumors at early stage
by monitoring the mitochondrial potential difference between
tumors and the surrounding normal tissues.

Lissamine rhodamine B (LRB) is a member of rhodamine
derivatives, which have been widely utilized as fluorescent probes
for determination of plasma and mitochondrial potentials,®™°
and for optical imaging of tumors.'”~** With this in mind,
we prepared “*Cu(DOTA-LRB) (Figure 1: DOTA-LRB = 2-
(6-(diethylamino)-3-(diethyliminio)-3H-xanthen-9-y1)-5-(N-(2-
(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecan-
1-yl)acetamido ) ethyl)sulfamoyl)benzenesulfonate). In **Cu-
(DOTA-LRB), LRB is the mitochondrion-targeting biomolecule
to carry **Cu into the tumor cells, where negative mitochondrial
potential is elevated as compared with normal cells in the
surrounding tissues. %Cu is a PET radionuclide with a A"
emission (18%, E, . = 0.655 MeV) and has a half-life of 12.7 h.

Even thou%h its B+ emission abundance is relatively low, the long
half-ife of ®*Cu makes it feasible to prepare, transport, and deliver
the radiotracer for imaging applications. More importantly, recent
breakthroughs in production of high specific-activity **Cu make it
more available to small institutions without an on-site cyclotron.**~*
®*Cu is a viable alternative to '°F for research programs that
cannot afford to support and maintain the radionuclide produc-
tion infrastructure. In addition, **Cu radiotracers will take full
advantage of PET with respect to high sensitivity, high spatial
resolution and ability to quantify radiotracer uptake. At the same
time, they also enjoy the easy availability of kit formulation, if
appropriately developed, for routine preparations in clinical settings.

In this report, we present the evaluation of **Cu(DOTA-LRB)
as a new radiotracer for tumor imaging. Biodistribution and
imaging studies were carried out in athymic nude mice bearing
U87MG glioma xenografts, which express very little multidrug
resistance P-glycoproteins (MDR Pgps) and multidrug resis-
tance-associated proteins (MRPs).*> Cu(DOTA-LRB) was pre-
pared as the fluorescent probe for cellular staining assays to
demonstrate its mitochondrial localization mechanism. For
comparison purposes, we also prepared 64Cu(DTPA-LRB)
(Figure 1) to assess the impact of bifunctional chelators
(BECs) on biological properties of **Cu radiotracers.

B EXPERIMENTAL SECTION

Materials and Instruments. Chemicals were purchased from
Sigma/Aldrich (St. Louis, MO), and were used without further
purification. Lissamine rhodamine B ethylenediamine (LRB)
was purchased from AnaSpec Inc. (Fremont, CA). DOTA-
(OBu-t);-NHS  (1,4,7,10-tetraazacyclododecane-1,4,7-tris(tert-
butyl acetate)-10-acetate mono(N-hydroxysuccinimide ester))
was purchased from Macrocyclics (Dallas, TX). The ESI
(electrospray ionization) mass spectral data were collected on
a Finnigan LCQ_classic mass spectrometer, the School of
Pharmacy, Purdue University. **Cu was produced using a CS-15
biomedical cyclotron at Washington University, School of Medi-
cine by the **Ni(p,n)**Cu nuclear reaction.

HPLC Methods. The semiprep HPLC method (method 1)
used a LabAlliance HPLC system equipped with a UV/vis
detector (4 = 254 nm) and Zorbax C,g semiprep column
(94 nm X 250 mm, 100 A pore size; Agilent Technologies,
Santa Clara, CA). The flow rate was 2.5 mL/min, and the mobile
phase was isocratic with 60% A (0.1% TFA in water) and 40% B
(0.1% TFA in methanol) at 0—S min, followed by a gradient
mobile phase going from 40% B at 5 min to 100% B at 20 min.
The radio-HPLC method (method 2) used the LabAlliance
HPLC system equipped with a f-ram IN/US detector
(Tampa, FL) and Vydac protein and peptide C;g column (4.6
mm X 250 mm, 300 A pore size; Grace Davison Discovery
Sciences, Hesperia, CA). The flow rate was 1 mL/min with the
gradient mobile phase being isocratic with 90% solvent A
(25 mM NH,OAc, pH = 6.8) and 10% solvent B (acetonitrile)
at 0—35 min, followed by a gradient mobile phase going from 10%
B at S min to 90% B at 20 min. Method 3 used the LabAlliance
HPLC system equipped with a UV/vis detector (4 = 254 nm), a
B-ram IN-US detector, a Superose 12 10/300 GL size-exclusion
column, and the flow rate of 0.4 mL/min. The aqueous mobile
phase was isocratic with 20 mM HEPES and 150 mM NaCl.

2-(6-(Diethylamino)-3-(diethyliminio)-3H-xanthen-9-yl)-
5-(N-(2-(2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclod-
odecan-1-yl)acetamido)ethyl)sulfamoyl)benzenesulfonate
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(DOTA-LRB). DOTA(OBu-t);-NHS (5.4 mg, 6.6 umol) and
LRB-en (4.3 mg, 6 umol) were dissolved in DMF (2 mL). To the
mixture was added triethylamine (9 L, 60 ymol). The mixture
was stirred at room temperature overnight. Upon removal of
volatiles under reduced pressure, the residue was dissolved in
2 mL of 12 N HCIL. After the mixture was stirred at room
temperature for 30 min, volatiles were removed under reduced
pressure. The residue was dissolved in 2 mL of 50% DMF/water
mixture, and the solution was subjected to HPLC purification
(method 1). The fraction at 16 min was collected and lyophilized
to give a purple powder (4.2 mg, 71%). ESI-MS: m/z = 987.10 for
[M + H]" (9864 calcd for [C4sHgoNgO;3S,]7).

5-(N-(1-Carboxy-2,5,8-tris(carboxymethyl)-10-oxo0-2,5,8,-
11-tetraazatridecan-13-yl)sulfamoyl)-2-(6-(diethylamino)-
3-(diethyliminio)-3H-xanthen-9-yl)benzenesulfonate (DTPA-
LRB). To a solution of diethylenetriaminepentaacetic dianhydride
(DTPA anhydride: 9.0 mg, 25 ¢mol) in a mixture of DMF (1 mL)
and DMSO (0.5 mL) was added diisopropylethylamine (DIEA,
3 drops). To the mixture above was added LRB (1.8 mg, 2.5 ¢mol)
in DMF (1 mL) dropwise over 1 h period. After addition of water
(2 mL), the pH in the reaction mixture was adjusted to 4.0—S5.0.
The product was isolated by HPLC (method 1). Fractions at
16 min were collected and lyophilized to give a purple powder
(0.9 mg, 37.5%). ESI-MS: m/z =975.9 for [M + H]* (975.3 caled
for [C43H57N701552]+)'

Cu(DOTA-LRB). To a vial containing DOTA-LRB (6 mg,
~6 umol) and Cu(OAc),-H,0 (1.2 mg, 6 umol) was added
1.5 mL of NH,OAc (0.5 M, pH = 5.5). The resulting solution was
heated at 100 °C for 30 min in a water bath. After the solution was
cooled to room temperature, the product was isolated by HPLC
(method 1). The fractions at 14.3 min were collected. Lyophi-
lization of the collected fractions gave a purple powder (5.0 mg,
80%). ESI-MS: m/z = 1047.9 for [M + H]" (1047.3 calcd for
[C4SH60C11N801382:|+)-

%4Cu-Labeling and Dose Preparation. To a clean Eppendorf
tube was added 40 ug of DOTA-LRB dissolved in 0.3 mL of 0.1
M NaOAc buffer (pH = 6.5) and 20 uL of %*CuCl, solution
(~500 uCi) in 0.05 N HCL. The reaction mixture was then
heated at 100 °C for 20 min in a water bath. After heating, the vial
was allowed to stand at room temperature for ~S min. For
%Cu(DTPA-LRB), radiolabeling could be completed by allow-
ing the reaction mixture to stand at room temperature for 10—20
min. A sample of the resulting solution was analyzed by HPLC
(method 2). Their log P values were determined according to the
literature procedure.*"* For biodistribution studies, **Cu
radiotracers were prepared and purified by HPLC. Volatiles in
HPLC mobile phases were removed on a rotary evaporator.
Doses were prepared by dissolving the purified **Cu radiotracer
in saline to ~30 #Ci/mL. The resulting solution was filtered with
20.20 um Millex-LG filter before being injected into animals. For
the imaging study, **Cu(DOTA-LRB) was prepared and the
resulting mixture was used without further purification.

Animal Model. Biodistribution studies were performed using
the athymic nude mice bearing U87MG human glioma xeno-
grafts in compliance with the NIH animal experiment guidelines
(Principles of Laboratory Animal Care, NIH Publication No. 86-23,
revised 1985). The animal protocol was approved by the
Purdue University Animal Care and Use Committee (PACUC).
U87MG cells were cultured in minimum essential medium, Eagle
with Earle’s balanced salt solution (nonessential amino acids
sodium pyruvate) (ATCC, Manassas, VA) in a humidified
atmosphere of 5% CO,, and were supplemented with 10% fetal

bovine serum and 1% penicillin and streptomycin solution
(GIBCO, Grand Island, NY). Female athymic nu/nu mice
(5—6 weeks) were purchased from Harlan (Indianapolis, IN).
Each mouse was implanted with § x 10° tumor cells subcuta-
neously into the left and right upper shoulder flanks. Four weeks
after inoculation, the tumor size was 0.1—0.4 g, and animals were
used for biodistribution studies.

Biodistribution Protocol. Twenty five tumor-bearing mice
(20—25 g) were randomly divided into five groups. Each animal
was administered with ~3 #Ci of the **Cu radiotracer by tail vein
injection. Five animals were sacrificed by sodium pentobarbital
overdose (~200 mg/kg) at 0.5, 1, 2, 4, and 24 h p.i. Blood
samples were withdrawn from the heart. The tumor, brain, eyes,
heart, spleen, lungs, liver, kidneys, muscle and intestine were
harvested, dried with absorbent tissue, weighed, and counted on
a y-counter (Perkin-Elmer Wizard-1480, Shelton, CT). The
organ uptake was calculated as the percentage of injected dose
per gram of organ mass (%ID/g) and the percentage of injected
dose per organ (%ID/organ). Biodistribution data (%ID/g) and
tumor-to-background (T/B) ratios are reported as an average
plus the standard deviation based on the results from S tumor-
bearing mice (10 tumors) at each time point. Comparison
between different radiotracers was made using the two-way
ANOVA test (GraphPad Prim 5.0, San Diego, CA). The level
of significance was set at p < 0.0S.

MicroPET. MicroPET scans were performed using an Inveon
DPET scanner (Siemens Medical Solutions). The tumor-bearing
nude mice (n = 3) were imaged in the prone position in the
microPET scanner. Each mouse was injected with ~250 uCi of
%Cu(DOTA-LRB) via the tail vein, then anesthetized with 2%
isoflurane and placed near the center of FOV. Multiple 5 min
static scans were obtained at 0.5, 1, 2, 4, and 24 h p.i. The images
were reconstructed by a three-dimensional ordered subsets
expectation maximum (3D-OSEM) algorithm. No correction
was applied for attenuation or scatter. Image analysis was done
using ASI Pro VM software.

Metabolic Stability. Normal athymic nude mice (1 = 3) were
used to study the metabolic stability of **Cu(DOTA-LRB). Each
mouse was administered with ~100 #Ci **Cu(DOTA-LRB) via
tail vein. Urine samples were collected at 30 and 120 min p.i. by
manual void, and were mixed with an equal volume of 50%
acetonitrile aqueous solution. The mixture was centrifuged at
8,000 rpm. The supernatant was collected and passed through a
0.20 um Millex-LG filter. The filtrate was analyzed by HPLC
(method 2). Feces samples were collected at 120 min p.i. and
suspended in 50% acetonitrile aqueous solution. The mixture
was vortexed for S—10 min. After centrifuging at 8,000 rpm, the
supernatant was collected and passed through a 0.20 #m Millex-
LG filter unit, and was then analyzed by HPLC (method 2). The
radioactivity recovery was >90% for both urine and feces
samples. The liver tissue was harvested at 120 min p.i., counted
in a y-counter, cut into small pieces, and then homogenized. The
homogenate was mixed with 2 mL of 50% acetonitrile aqueous
solution. The mixture was vortexed for S—10 min. After cen-
trifuging at 8000 rpm for S min, the supernatant was collected
and counted in a y-counter. The radioactivity recovery was
~35% from liver homogenate. After filtration through a 0.20 um
Milex-LG filter unit, the filtrate was then analyzed by HPLC
(methods 2 and 3).

Cell Culture and Isolation Protocol. All the cell lines were
purchased from American Type Culture Collection (ATCC,
Manassas, VA). U87MG human glioma cells were cultured in the
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Minimum Essential Medium supplemented with 10% fetal
bovine serum (FBS, ATCC) and 1% penicillin and streptomycin
(GIBCO) solution. Human fibroblasts were cultured in fibro-
blast dermal media supplemented with low serum growth kit
(ATCC, including 7.5 mM L-glutamine, S ng/mL rh FGF f,
S ug/mL insulin, 1 ug/mL hydrocortisone, 50 @g/mL ascorbic
acid and 2% serum). The primary U87MG glioma tumor cells
were extracted from xenografted U87MG tumors. Briefly, tumor
tissues were cut and immersed immediately in completed Minimum
Essential Medium (ATCC) media. The tumor tissues were
rinsed twice with the Hanks solution and dissected into small
pieces with razor blades. Small tumor pieces were digested with
0.25% trypsin (1 mM EDTA, without Ca>* and Mg2+) solution
at 37 °C for 30 min, followed by vigorous pipetting and filtration
through a 40 um mesh nylon screen. After centrifugation at
1000 rpm for S min, the pellet was resuspended in the culture
medium. All cells were grown at 37 °C in a humidified atmo-
sphere containing 5% CO,.

Cellular Staining Protocol. Cells (U87MG glioma and
human fibroblasts cells) were allowed to culture in Lab-Tek
8-well glass chamber slides for at least 24 h before being used in
the experiments. Cu(DOTA-LRB) was added into the cell
culture medium to achieve a final concentration of 20 uM.
Hoechst 33342 was added directly into the medium at a final
concentration of 1 #M for 5 min before completion of incubation
with Cu(DOTA-LRB). After incubation for 4 h, the tumor cells
were washed three times with the phenol red-free Minimum
Essential Medium. The fluorescence was visualized immediately
with an Olympic BXS1 fluorescence microscope (Olympus
America Inc,, Center Valley, PA) under 400X magnification.

Uncoupling Experiment. This experiment was carried out
according to the literature methods**>° with slight modification
using carbonyl cyanide m-chlorophenylhydrazone (CCCP) to
disrupt the mitochondrial potential. In this experiment, U§7MG
glioma cells were pretreated with CCCP for 15 min. After
incubation with Cu(DOTA-LRB) (20 uM) and CCCP (20,
50, 100 uM) for the specified time (0, 1, 4, and 8 h), US7MG
glioma cells were washed with the phenol red-free Minimum
Essential Medium. The fluorescence was visualized immediately
with an Olympic BXS1 fluorescence microscope. All images were
acquired using a Hamamatsu digital CCD camera ORCA-R*
(Hamamatsu Photonics KK, Japan). Quantification of fluorescent
intensity was performed using Olympus MetaMorph software
(Molecular Devices, Sunnyvale, CA). The average of relative
fluorescent intensity for each cell in each group was calculated
from at least 15 randomly selected areas, and was normalized by
the background fluorescence. Student's t test was used to
determine the difference between CCCP-treated and control
groups. The significant difference was set at p < 0.05.

B RESULTS

DOTA-LRB and DTPA-LRB. DOTA-LRB was prepared by
reacting LRB-en with DOTA(OBu-t)3-NHS in DMF under basic
conditions (pH: 8.5—9.0). Hydrolysis of the tert-butyl esters with
concentrated HCI gave the expected product, which then was
purified by HPLC. DTPA-LRB was prepared by direct conjuga-
tion of LRB-en with excess DTPA under similar conditions for
DOTA-LRB. The chemical compositions of DOTA-LRB and
DTPA-LRB were confirmed by ESI-MS data. Their HPLC purity
was >95% before being used for radiolabeling.

Table 1. Radiochemical Purity (RCP), HPLC Retention
Time and log P Values for **Cu Radiotracers

radiotracer RCP (%) retention time (min) log P value
**Cu(DOTA-LRB) >95 14.6 —14%0.1
%Cu(DTPA-LRB) >95 142 —1.540.1
%*Cu(DO3A-xy-TPEP) >95 13.7 —1740.1

Cu(DOTA-LRB). Cu(DOTA-LRB) was designed as a fluorescent
probe for cellular staining experiments since it has identical
chemical composition to that of **Cu(DOTA-LRB). It was
prepared by reacting DOTA-LRB with one equivalent of Cu(II)
acetate in 0.5 M NH,OAc (pH = S.5). HPLC concordance
experiment showed that the retention times of Cu(DOTA-LRB)
and **Cu(DOTA-LRB) were almost identical (14.3 min), sug-
gesting that they have the same composition. The ESI-MS
spectrum of Cu(DOTA-LRB) displays two molecular ions:
m/z = 1047.9 for [M + H]" and m/z = 1070.0 for [M + Na] ™.

54Cu(DOTA-LRB) and ®*Cu(DTPA-LRB). **Cu(DOTA-LRB)
was prepared by reacting DOTA-LRB with *CuCl, in 100 mM
NH,OAc buffer (pH = 5.0) at 100 °C for 10 min. **Cu(DTPA-
LRB) could be readily prepared at room temperature. The
radiochemical purity was >95% without HPLC purification with
a specific activity of ~50 Ci/mmol. No further optimization was
made to improve their specific activity. The HPLC retention
times and log P values are listed in Table 1. **Cu(DOTA-LRB)
(log P = —1.4 4 0.1) and **Cu(DTPA-LRB) (log P = —1.5 +
0.1) were more lipophilic than the **Cu-labeled phosphonium
cations.***® In addition, we found that *Cu(DOTA-LRB) was
stable for >8 h after HPLC purification.

Biodistribution Characteristics. The biodistribution data for
**Cu(DOTA-LRB) are listed in Table SII in the Supporting
Information. Table SI2 in the Supporting Information sum-
marizes the organ uptake and T/B ratios of **Cu(DTPA-LRB)
at 4 h p.i. Figure 2 compares the selected organ uptake (%ID/g)
and T/B ratios of **Cu(DOTA-LRB) and 64Cu(DOSA—xy—
TPEP) (DO3Axy-TPEP = (2-(diphenylphosphoryl)ethyl)-
diphenyl(4-((4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclo-
dodecan-1-yl)methyl)benzyl) phosphonium). **Cu(DO3A-xy-TPEP)
was used for comparison since it has the best tumor uptake
and T/B ratios among the **Cu-labeled phosphonium cations
evaluated in the same glioma-bearing animal model.**~* We
also obtained the biodistribution data (Table SI2 in the
Supporting Information) for %*Cu(DTPA-LRB) and **CuCl,.
Figure 3 shows the selected organ uptake (%ID/g) and T/B
ratios of **Cu(DOTA-LRB), **Cu(DTPA-LRB) and **CuCl,
at 4 h p.i. to illustrate the mitochondrion-targeting capability of
LRB and the impact of BEC on biological properties of “*Cu
radiotracers.

In general, %*Cu(DOTA-LRB) was excreted through the renal
system with more than 65% of injected radioactivity being
recovered from the urine sample at 1 h p.i. The blood radio-
activity and tumor uptake of **Cu(DOTA-LRB) (Table SI1 in
the Supporting Information) were significantly higher (p < 0.01)
than those of **Cu(DO3A-xy-TPEP)*® over 72 h. We were
surprised that %*Cu(DOTA-LRB) had tumor uptake (6.54 +
1.50, 6.91 + 1.26, 5.68 £ 1.13, 7.58 £ 1.96, and 5.14 £ 1.50%
ID/gat 0.5, 1,2, 4, and 24 h p.i, respectively) that is comparable
to or higher than many radiolabeled multimeric cyclic RGD
peptides evaluated in the glioma-bearing animal model.*> %
The tumor uptake of **Cu(DOTA-LRB) remained almost

1201 dx.doi.org/10.1021/mp200025m |Mol. Pharmaceutics 2011, 8, 1198-1208



Molecular Pharmaceutics

-
o
)

ODO3A-xy-TPEP HDOTA-LRB

Glioma Uptake (%ID/g)
(=2}

Time Postinjection

9 -
N -
o 0N
0 T T T
0.5h 1h 2h 4h

Liver Uptake (%ID/g)

24h
Time Postinjection
15 7
k-]
e 121
©
°
2 9-4
Q
g 61 !
=
=
3 - ’_i
0 ,_- T T T T
0.5h 1h 2h 4h 24 h
Time Postinjection
o 1.5 7
5 .
X 1.2
[
2
2 0.9 1
g -
S 0.6
=
03 | ’—LI
0.0 T T T T
0.5h 1h 2h 4h 24 h

Time Postinjection

0 ’—I T ’_I T ’_I T ’—I T [
0.5h 1h 2h 4h 24h

Tumor/Lung Ratio Muscle Uptake (%ID/g)

Tumor/Muscle Ratio

Heart Uptake (%ID/g)

: ’—LI ’—LI
| ’_LI ’_LI l
0 T T T T

0.5h 1h 2h 4h 24 h

Time Postinjection

2 -
1.5 1
1 1
0.5 1 I I T R
0 T T T ’_. T .—|
05h 1h 2h 4h 24h
Time Postinjection
3 -
2 T -
1- ’J_' ’J_I
Sis N Nl Wi}
0.5h 1h 2h 4h 24h
Time Postinjection
50 1
40
30 A
20 - T
10 1
o+ : : .
0.5h 1h 2h 4h 24h

Time Postinjection

Figure 2. Direct comparison of the selected organ uptake and T/B ratios of “*Cu(DOTA-LRB) and **Cu(DO3A-xy-TPEP) in the athymic nude mice

(n = S) bearing US7MG glioma xenografts.

unchanged while there was a slow increase in the tumor uptake of
**Cu(DO3A-xy-TPEP) over the first 4 h. The uptake of **Cu-
(DOTA-LRB) in the heart and muscle was also higher than that
of **Cu(DO3A-xy-TPEP) during the same period. Tumor/liver
ratios of **Cu(DOTA-LRB) were almost identical to those of
**Cu(DO3A-xy-TPEP) over 4 h p.i. There were significant
differences between **Cu(DOTA-LRB) and **Cu(DTPA-LRB).
For example, the tumor uptake of “*Cu(DOTA-LRB) was 7.6%
ID/g (Figure 3) while it was 5.6%ID/g for **Cu(DTPA-LRB) at
the same time point. **Cu(DOTA-LRB) had kidney uptake of
4.4%ID/g at 4 h p.i, which was 2x lower than that of **Cu-
(DTPA-LRB) (8.9%ID/gat 4 hp.i.). The liver uptake (Table SI2
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in the Supporting Information) was 7.7%ID/g for **Cu(DOTA-
LRB) while the liver uptake was 31.3%ID/g for %*Cu(DTPA-
LRB) at the same time point. **Cu(DOTA-LRB) also showed a
significantly lower blood radioactivity accumulation (0.7%ID/g
at 4 h p.i) than **Cu(DTPA-LRB) (2.7%ID/g at 4 h p.i.).
Apparently, BFCs (DOTA vs DTPA) have a significant impact
on the organ uptake and T/B ratios of “*Cu radiotracers. Without
the LRB targeting moiety, %CuCl, had much lower tumor
uptake (Figure 3) than **Cu(DOTA-LRB) and **Cu(DTPA-
LRB). Thus, LRB is required for tumor localization of **Cu
radiotracers. The uptake of 5*CuCl, in normal organs (e.g,
blood, heart, intestine, kidneys and liver) was well comparable
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to that of **Cu(DTPA-LRB) within experimental error (Table SI2
in the Supporting Information).

MicroPET. Figure 4 shows microPET images of a glioma-
bearing mouse administered with ~250 uCi of “*Cu(DOTA-
LRB) at 0.5, 1,2, 4, and 24 h p.i. The tumor was clearly visualized
as early as 30 min p.i. with excellent T/B contrast. No significant
radioactivity accumulation was detected in the brain and muscle.
After normalization, its tumor uptake values were 6.06 &£ 0.07,
6.53 £ 0.48,7.82 £ 1.06,9.03 £ 0.95, and 4.75 £ 0.56%ID /g at
0.5,1,2,4,and 24 h p.i,, respectively. These data were completely
consistent with those from biodistribution (Figure 2).

Metabolic Stability. Figure S shows radio-HPLC chromato-
grams of ®*Cu(DOTA-LRB) in saline before injection (A), in the
urine at 30 min (B) and 120 min p.i. (C), and in the feces at 120
min p.i. (D). Apparently, it was stable during renal excretion over
the 2 h period; but it underwent extensive degradation during
hepatobiliary excretion as evidenced by the presence of two
major radiometric peaks at 5 and 8 min (Figure SD). We also

O %cucl,
35 W SCy(DTPA-LRB)
] m ®cuDoTA-LRB)

Glioma Uptake (%ID/g)
N
o

Blood Intestine  Kidneys Liver Lungs Us7MG

O *cucl,
B *Cu(DTPA-LRB)
B *“Cu(DOTA-LRB)

T/B Ratios
o

Tumor/Blood Tumor/Heart Tumor/Kidney Tumor/Lungs Tumor/Muscle

Figure 3. Direct comparison of the selected organ uptake and T/B
ratios of “*Cu(DOTA-LRB), **Cu(DTPA-LRB) and **CuCl, in athymic
nude mice (n = S) bearing U87MG glioma xenografts at 4 h p.i. These
data clearly showed that the LRB moiety is required for tumor localiza-
tion of **Cu radiotracers and BEC is important for their biodistribution
characteristics.

examined its metabolic stability in liver. We found that ~35% of
radioactivity was recovered from the liver homogenate. Using the
reverse-phased column, there was one radiometric peak at 4 min
(Figure SE) with no intact %*Cu(DOTA-LRB), suggesting that it
underwent complete transchelation in the liver during the 2 h
study period. Under the size-exclusion conditions, four radio-
metric peaks at 35, 40, 48, and S0 min were observed in the
HPLC chromatogram (Figure 4F). The chromatographic pat-
terns were almost identical to those reported for *Cu(DO3A-xy-
TPEP) in nude mice,*® and those for the ®*Cu-labeled tetra-
azamacrocycles in the rat liver.*"*® Attempts to examine the
stability of **Cu(DOTA-LRB) in the tumor were unsuccessful
due to very low radioactivity recovery from the glioma tissues.

Localization in Mitochondria. Figure 6 shows microscopic
images of the primary U87MG glioma cells, U87MG human
glioma cells and normal human fibroblast cells stained with
20 uM of Cu(DOTA-LRB). It was clear that Cu(DOTA-LRB)
localize mainly in tumor mitochondria. It must be noted that
Cu(DOTA-LRB) was also able to localize in the mitochondria of
normal human fibroblast cells. However, the mitochondrial
fluorescent intensity was too low to be seen clearly using the
same brightness and contrast for the cultured primary U87MG
glioma cells.

Differential Uptake and Mitochondrial Potential. An un-
coupling experiment was used to demonstrate the importance of
mitochondrial potential. In this experiment, CCCP was used to
disrupt the mitochondrial potential in U87MG glioma cells.
Figure 7 illustrates representative microscopic images of the
U87MG glioma cells stained with 20 yuM Cu(DOTA-LRB)
with/without CCCP treatment, and the cellular fluorescent
intensity quantification. It is quite clear that the fluorescence
intensity in tumor mitochondria decreased dose-dependently
after treatment with CCCP. At 100 u#M, the relative fluorescent
intensity is only about 1.2, which is close to the background. The
uptake reduction of Cu(DOTA-LRB) in mitochondria of glioma
cells was also time-dependent with the CCCP treatment (Figure SI1
in the Supporting Information).

H DISCUSSION

Previously, we have evaluated a series of *Cu-labeled TPP and
TPEP cations as potential PET radiotracers for imaging tumors
in athymic nude mice bearing U87MG human glioma
xenografts.**~* We found that **Cu(DO3A-xy-TPEP) has

05h 1h 2h
>~ 8 e nd |
JAEIE
v

4h 24 h
16%ID/g

-3
ng
N | &
0%ID/g

Figure 4. The decay-corrected whole-body coronal microPET images of the athymic nude mice bearing U87MG human glioma xenografts
administered with ~250 uCi of **Cu(DOTA-LRB). Arrows indicate the presence of glioma tumors.
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Figure 5. Representative radio-HPLC chromatograms of “*Cu(DOTA-LRB) in saline before injection (A), in urine at 30 min (B) and 120 min p.i. (C),
in feces at 120 min p.i. (D), and in the liver homogenate using the reverse-phased HPLC column (E) and the size-exclusion HPLC column (F).

A

C

Figure 6. Representative microscopic images (magnification: 400 x ) of the cultured primary U87MG glioma cells (A), U87MG human glioma cells (B)
and the normal human fibroblast cells (C) stained with 20 uM Cu(DOTA-LRB) (red color). The nuclei were stained with 1 4M Hoechst 33342 (blue color).
Normal fibroblast cell line was used as the “negative control” to demonstrate the tumor selectivity of %4Cu(DOTA-LRB).

higher tumor selectivity as compared to that of **™Tc-
sestamibi.*® In this study, we found that *Cu(DOTA-LRB)
has significantly higher (p < 0.01) glioma uptake than that of
**Cu(DO3A-xy-TPEP) over the 24 h study period (Figure 2).
®*Cu(DOTA-LRB) has the highest tumor uptake among the
**Cu-labeled organic cations evaluated in the same glioma-bearing

1204

animal model.**** The tumor/lung ratios of **Cu(DOTA-
LRB) were better than those of 64Cu(DO3A—xy—TPEP); but
their tumor/liver ratios were comparable over 4 h p.i. On the
basis of these results, we believe that **Cu(DOTA-LRB) is a
better PET radiotracer than 64Cu(DO3A—xy—TPEP) for imaging
the MDR-negative tumors.
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Figure 7. Representative microscopic images (magnification: 400 ) of
the living U87MG human glioma cells stained with 20 uM of Cu-
(DOTA-LRB)in the presence of CCCP (0, 20, 50, and 100 uM), and
quantification of cellular fluorescent intensity. All images were adjusted
with the same brightness and contrast. The relative fluorescent intensity
for each cell in each group was calculated from at least 1S randomly
selected areas, and was normalized by the background fluorescence.

It is unclear why “*Cu(DOTA-LRB) has significantly higher
(p <0.01) tumor uptake than “*Cu(DO3A-xy-TPEP) (Figure 2).
On the basis of their lipophilicity (Table 1), one might suggest
that the low tumor uptake is related to its lower lipophilicity and
slower penetration kinetics across mitochondrial membrane. We
believe that this explanation is oversimplified, given the fact other
factors (e.g., the structure of targeting molecule, the coordination
geometry of **Cu chelate and the overall molecular charge) will
definitely have significant impact on biological properties of “*Cu
radiotracers. More studies are needed to further define the
relationship between lipophilicity and tumor uptake kinetics of
®*Cu-labeled organic cations.

**Cu(DOTA-LRB) undergoes extensive metabolic degrada-
tion (>65%) during hepatobiliary excretion (Figure S). Similar
metabolic instability was observed for **Cu(DOTA-xy-TPEP)
(DOTAxy-TPEP = (2-(diphenylphosphoryl)ethyl)diphenyl-
(4-((2-(4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclodode-
can-1-yl)acetamido ) methyl)benzyl) phosphonium).* We examined

the liver stability of %*Cu(DOTA-LRB), and found that no
®Cu(DOTA-LRB) was intact in the extract from the liver
homogenate (Figure 5). The HPLC profile (Figure SF) of **Cu-
(DOTA-LRB) in the liver homogenate is very similar to those
reported for **Cu(DO3A-xy-TPEP) in nude mice** and the **Cu-
labeled tetraazamacrocycles in the rat liver homogenate using the
same size-exclusion method.>*>® Therefore, we believe that the
four radiometric peaks (Figure SF) are likely caused by complete
transchelation of **Cu from **Cu(DOTA-LRB) to the proteins,
such as superoxide dismutase, abundant in the liver. This state-
ment is further supported by the fact that **Cu(DTPA-LRB) is
unstable in vivo, and has liver uptake (Table SI2 in the Supporting
Information) ~4X higher than that of %*Cu(DOTA-LRB). The
fact that “*Cu(DTPA-LRB) and **CuCl, share similar uptake in
normal organs, such as blood, heart, intestine, kidneys and liver
(Table SI2 in the Supporting Information), strongly suggests that
the high uptake of “*Cu(DTPA-LRB) in these organs is caused by
the in vivo instability of the **Cu(DTPA) chelate.

The mitochondrial localization of ®*Cu(DOTA-LRB) has
been clearly demonstrated using Cu(DOTA-LRB) as the fluorescent
probe (Figure 6A,B). Since Cu(DOTA-LRB) is also able to
localize in human fibroblasts (Figure 6C), the difference in
fluorescent intensity inside the mitochondria is most likely origi-
nated from the increased mitochondrial potential in U87MG
glioma cells as compared with that of normal fibroblasts. This
statement is completely supported by the results from decou-
pling experiment with CCCP (Figure 7). These results strongly
support our hypothesis that the tumor selectivity of **Cu-
(DOTA-LRB) is caused by the increased negative mitochondrial
potential in U87MG glioma cells as compared to the cells from
surrounding normal tissues.

We have been intrigued by the mitochondrion-targeting
capability of LRB. As demonstrated in this study, °*Cu-
(DOTA-LRB) can localize in tumor mitochondria with a long
tumor retention time. Biodistribution data (Tables SI1 and SI2 in
the Supporting Information) showed that **Cu(DTPA-LRB)
and **CuCl, share similar uptake in normal organs (Table SI2 in
the Supporting Information), such as blood, heart, intestine,
kidneys and liver due to in vivo instability of **Cu(DTPA-LRB).
The dramatic difference in their glioma uptake (**Cu(DTPA-
LRB), 5.6%ID/g; and **CuCl,, 1.8%ID/g) strongly suggests that
the LRB moiety is needed for **Cu(DTPA-LRB) and **Cu-
(DOTA-LRB) to selectively target the energized mitochondria
of tumor cells and to achieve a high uptake in tumor tissues. We
also made many attempts to examine the stability of **Cu-
(DOTA-LRB) in tumor tissues without success due to very
low radioactivity recovery. The fact that the radioactivity recov-
ered from tumor tissues was too low for HPLC analysis seems to
suggest that %Cu(DOTA-LRB) might be decomposed as it is in
the liver (Figure S) once it is taken into the tumor mitochondria.
From this point of view, the long tumor retention is probably
caused by its instability in tumor mitochondria. This statement is
further supported by the fact that **Cu(DTPA-LRB) has very
low stability, and its tumor uptake (Table SI2 in the Supporting
Information) is close to that of “*Cu(DOTA-LRB) since they
both are able to release a certain amount of **Cu into the tumor
cells. It seems that there is always a balance between the in vivo
stability of the ®*Cu-BFC chelate and the tumor uptake of **Cu
radiotracers. If the “*Cu-BEC chelate is too unstable in vivo, the
%*Cu radiotracer may become completely decomposed to release
*Cu, which will definitely result in high liver uptake. The next
question is how stable is enough for the **Cu-BEC chelate. More
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studies are required to further define the relationship between
the in vivo stability of ®*Cu-BFC chelates on the tumor uptake
and retention time of ®*Cu-labeled rhodamine derivatives.

One might be concerned that %*Cu(DOTA-LRB) has little
usage for glioma imaging in clinics due to its poor brain
penetration capability. As a matter of fact, this is its significant
advantage since **Cu(DOTA-LRB) has very low radioactivity
accumulation in normal tissues of the brain (Figure 2). Since
tumors have more leaky capillaries, the blood brain barrier is not
a significant issue for *Cu-labeled rhodamine cations. **™Tc-
sestamibi and *™Tc-tetrofosmin are cationic, and have been
used for imaging brain tumors in cancer patients.**®' "'C-TPP
is also cationic, and was used to image brain tumors in dogs.32

Il CONCLUSION

In summary, we evaluated %Cu(DOTA-LRB) as a new PET
radiotracer to image tumors in athymic nude mice bearing
U87MG human glioma xenografts. We found that *Cu-
(DOTA-LRB) has the highest tumor uptake among %4Cu-labeled
organic cations evaluated in the glioma-bearing model. It is
surprising that a simple molecule like **Cu(DOTA-LRB) could
have tumor uptake higher than or comparable to that of many
radiolabeled multimeric cyclic RGD peptides in the same animal
model.>' "> We also explored its localization mechanism in
U87MG glioma cells, and found that Cu(DOTA-LRB) is able
to selectively localize in the tumor mitochondria. Its long tumor
retention time is probably caused by its intracellular instability.
On the basis of these results, we believe that **Cu(DOTA-LRB)
is a promising lead compound for the development of mitochon-
drion-directed ®*Cu PET radiotracers, but further minimization
of liver uptake is needed. In addition, Cu(DOTA-LRB) is also an
excellent fluorescent probe, which makes the dual modality
imaging (PET and optical) possible using two imaging agents,
%Cu(DOTA-LRB) and Cu(DOTA-LRB), with the same com-
position. In this way, we are able to demonstrate the tumor
localization of the **Cu radiotracer by PET, and at the same time
we can visualize its intracellular location in living tumor cells by
fluorescent assays or optical imaging methods.
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for **Cu(DOTA-LRB) (Table SI1), **Cu(DTPA-LRB) (Table SI2)
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